

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/frugal/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/frugal/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Frugal

Frugal is an extension of Apache Thrift [https://thrift.apache.org/] which
provides additional functionality. Specifically, it includes support for
request headers, request multiplexing, thread safety, and code-generated
pub/sub APIs. Frugal is intended to act as a superset of Thrift, meaning it
implements the same functionality as Thrift with some additional
features. For a more detailed explanation, see the
documentation.

Currently supported languages are Go, Java, Dart, and Python (2.7 and 3.5).


Installation


Download

Pre-compiled binaries for OS X and Linux are available from the Github
releases tab. Currently, adding these binaries is a manual process. If
a downloadable release is missing, notify the messaging team to have it
added.




From Source


	Install go [https://golang.org/doc/install] and setup GOPATH [https://github.com/golang/go/wiki/GOPATH].



	Install godep [https://github.com/tools/godep].



	Get the frugal source code

$ go get github.com/Workiva/frugal





Or you can manually clone the frugal repo

$ mkdir -p $GOPATH/src/github.com/Workiva/
$ cd $GOPATH/src/github.com/Workiva
$ git clone git@github.com:Workiva/frugal.git







	Install frugal with godep

$ cd $GOPATH/src/github.com/Workiva/frugal
$ godep go install









When generating go, be aware the frugal go library and the frugal compiler
have separate dependencies.






Usage

Define your Frugal file which contains your pub/sub interface, or scopes, and
Thrift definitions.

# event.frugal

// Anything allowed in a .thrift file is allowed in a .frugal file.
struct Event {
    1: i64 ID,
    2: string Message
}

// Scopes are a Frugal extension for pub/sub APIs.
scope Events {
    EventCreated: Event
}





Generate the code with frugal. Currently, only Go, Java, Dart, and Python are
supported.

$ frugal -gen=go event.frugal





By default, generated code is placed in a gen-* directory. This code can then
be used as such:

// publisher.go
func main() {
    conn, err := nats.Connect(nats.DefaultURL)
    if err != nil {
        panic(err)
    }

    var (
        protocolFactory  = frugal.NewFProtocolFactory(thrift.NewTBinaryProtocolFactoryDefault())
        transportFactory = frugal.NewFNatsScopeTransportFactory(conn)
        provider         = frugal.NewFScopeProvider(transportFactory, protocolFactory)
        publisher        = event.NewEventsPublisher(provider)
    )
    publisher.Open()
    defer publisher.Close()

    event := &event.Event{ID: 42, Message: "Hello, World!"}
    if err := publisher.PublishEventCreated(frugal.NewFContext(""), event); err != nil {
        panic(err)
    }
}





// subscriber.go
func main() {
    conn, err := nats.Connect(nats.DefaultURL)
    if err != nil {
        panic(err)
    }

    var (
        protocolFactory  = frugal.NewFProtocolFactory(thrift.NewTBinaryProtocolFactoryDefault())
        transportFactory = frugal.NewFNatsScopeTransportFactory(conn)
        provider         = frugal.NewFScopeProvider(transportFactory, protocolFactory)
        subscriber       = event.NewEventsSubscriber(provider)
    )

    _, err = subscriber.SubscribeEventCreated(func(ctx *frugal.FContext, e *event.Event) {
        fmt.Println("Received event:", e.Message)
    })
    if err != nil {
        panic(err)
    }

    wait := make(chan bool)
    log.Println("Subscriber started...")
    <-wait
}






Prefixes

By default, Frugal publishes messages on the topic <scope>.<operation>. For
example, the EventCreated operation in the following Frugal definition would
be published on Events.EventCreated:

scope Events {
    EventCreated: Event
}





Custom topic prefixes can be defined on a per-scope basis:

scope Events prefix foo.bar {
    EventCreated: Event
}





As a result, EventCreated would be published on foo.bar.Events.EventCreated.

Prefixes can also define variables which are provided at publish and subscribe
time:

scope Events prefix foo.{user} {
    EventCreated: Event
}





This variable is then passed to publish and subscribe calls:

var (
    event = &event.Event{ID: 42, Message: "hello, world!"}
    user  = "bill"
)
publisher.PublishEventCreated(frugal.NewFContext(""), event, user)

subscriber.SubscribeEventCreated(user, func(ctx *frugal.FContext, e *event.Event) {
    fmt.Printf("Received event for %s: %s\n", user, e.Message)
})








Generated Comments

In Thrift, comments of the form /** ... */ are included in generated code. In
Frugal, to include comments in generated code, they should be of the form /**@ ... */.

/**@
 * This comment is included in the generated code because
 * it has the @ sign.
 */
struct Foo {}

/**@ This comment is included too. */
service FooService {
    /** This comment isn't included because it doesn't have the @ sign. */
    Foo getFoo()
}








Annotations

Annotations are extra directive in the IDL that can alter the way code is generated.
Some common annotations are listed below

| Annotation    | Values        | Allowed Places | Description
| ————- | ————- | ————– | ———–
| vendor        | Optional location | Namespaces, Includes | See vendoring includes
| deprecated    | Optional description | Service methods | Marks a method as deprecated (if supported by the language) and logs a warning if the method is called.




Vendoring Includes

Frugal does not generate code for includes by default. The -r flag is
required to recursively generate includes. If -r is set, Frugal generates the
entire IDL tree, including code for includes, in the same output directory (as
specified by -out) by default. Since this can cause problems when using a
library that uses a Frugal-generated object generated with the same IDL in two
or more places, Frugal provides special support for vendoring dependencies
through a vendor annotation on includes and namespaces.

The vendor annotation is used on namespace definitions to indicate to any
consumers of the IDL where the generated code is vendored so that consumers can
generate code that points to it. This cannot be used with * namespaces since
it is language-dependent. Consumers then use the vendor annotation on
includes they wish to vendor. The value provided on the include-side vendor
annotation, if any, is ignored.

When an include is annotated with vendor, Frugal will skip generating the
include if use_vendor language option is set since this flag indicates
intention to use the vendored code as advertised by the vendor annotation.

If no location is specified by the vendor annotation, the behavior is defined
by the language generator.

The vendor annotation is currently only supported by Go and Dart.

The example below illustrates how this works.

bar.frugal (“providing” IDL):

namespace go bar (vendor="github.com/Workiva/my-repo/gen-go/bar")
namespace dart bar (vendor="my-repo/gen-go")

struct Struct {}





foo.frugal (“consuming” IDL):

include "bar.frugal" (vendor)

service MyService {
    bar.Struct getStruct()
}





frugal -r -gen go:package_prefix=github.com/Workiva/my-other-repo/gen-go,use_vendor foo.frugal





When we run the above command to generate foo.frugal, Frugal will not
generate code for bar.frugal since use_vendor is set and the “providing”
IDL has a vendor path set for the Go namespace. Instead, the generated code for
foo.frugal will reference the vendor path specified in bar.frugal
(github.com/Workiva/my-repo/gen-go/bar).






Thrift Parity

Frugal is intended to be a superset of Thrift, meaning valid Thrift should be
valid Frugal. File an issue if you discover an inconsistency in compatibility
with the IDL.




Docker


Via Shipyard

Grab the frugal Docker image id for the image you would like to use from
Shipyard [https://shipyard.workiva.org/repo/Workiva/frugal].

Switch to the directory that has the files you would like to generate.

Then run the docker image. This command will mount your local directory into
the image. It supports all of the standard Frugal commands.

docker run -v "$(pwd):/data" drydock.workiva.org/workiva/frugal:{SHIPYARD_ID} frugal -gen={LANG} {FILE_TO_GEN}





An example to generate the Go code off the event.frugal definition in the
example directory.

$ cd example
$ docker run -v "$(pwd):/data" drydock.workiva.org/workiva/frugal:17352 frugal -gen=go event.frugal













          

      

      

    

  

    
      
          
            
  
Release

To update the frugal version for release, use the python script provided in the
scripts directory. Note: You must be in the root directory of frugal.

Make sure you have the latest develop:

    $ git checkout develop && git pull





Checkout branch labeled with the release version:

    $ git checkout -b release_1_14_0





Note: The version for the release branch is determined via
semantic versioning [http://semver.org/] based on the apis exposed in the
master branch.

Update version with python update script, commit, and push:

    $ python scripts/update.py --version=1.14.0
    $ git commit -m "Bump version to 1.14.0"
    $ git push origin release_1_14_0





From this point on, only bug fixes may be merged to the release branch.
When the release candidate is ready for release, open PR to master with label:

    MSG-161 RELEASE frugal 1.14.0





Where the MSG (or sometimes RM) ticket is the one tracked by MARV. Note: If the
version you are releasing doesn’t match the version tracked by MARV, double
click the version in MARV and change it to the appropriate value before you
open the PR.

Get at least two +1’s, merge and wait for Rosie to tag the release in github.
Download the smithy release artifact from the release build (e.g.  1.14.0)
rename to frugal-1.14.0-linux-amd64 and drag and drop the binary to the release
(e.g. 1.14.0) - note: you’ll have to click Edit on the release.





          

      

      

    

  

    
      
          
            
  
Contributing to Frugal


Creating Pull Requests


	Read the Workiva Go Best Practices [https://docs.google.com/document/d/1hReRG1wvEZS5BV1H3a9Q4eZV6xV651BF3CfbDVjWMa0]
document.

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Prefix the commit message area impacted by the commit - compiler, language, etc, i.e. “Python: Fix annoying bug”.

	Branch off develop, PR back to develop.






Reviewing Code


	Check out the guide to high-quality code
reviews [https://docs.google.com/presentation/d/1b3oJrtdjCOyeH4N5Od0jDmEOT4449SXFiYgNoUOg2io/edit#slide=id.p]

	We require two +1s on the last commit of every PR before it is merged.

	If you think a PR could affect security (or Aviary flags the PR as a
security-related PR), it must also have a separate “security +1” on the last
commit in addition to two +1s.
	The security +1 can come from one of the devs who +1’d the PR in the first
place.





	To request code reviews from the team as a whole, include “@Workiva/messaging-pp” in your PR message.






Current Frugal Maintainers


	Brian Shannan

	Charlie Strawn

	Steven Osborne

	Tyler Rinnan

	Tyler Treat









          

      

      

    

  

    
      
          
            
  
frugal.vim

A frugal syntax plugin for vim.


Installation

Copy frugal.vim into ~/.vim/bundle or use your preferred plugin manager.







          

      

      

    

  

    
      
          
            
  
Frugal - Cross language test suite

Used to verify that each supported transport and protocol works as expected
across all supported languages.


To Run:


In Skynet:

Push to any Smithy enabled Frugal fork.  Skynet will execute tests with using
the current Frugal branch (not the latest release).




Locally:

Setup skynet-cli [https://github.com/workiva/skynet-cli] and run skynet run cross-local. The ‘cross’ configuration (which is executed in Skynet) uses
Smithy build artifacts whereas the ‘cross-local’ configuration does not
require these to execute the test suite.  ‘cross-local’ will only execute
tests using Frugal code generation.




Debugging

Errors are reported to unexpected_failures.log (under “Artifacts” on a Skynet
run or under “Test Artifacts” at the end of the logs in skynet-cli).  This log
will enable you to see exactly where tests are failing.  This log also contains
the command (and directory where the command was run) that was used to run each
configuration near the top of the pair. These commands can be used in local
debugging - no need to run skynet-cli or push a new commit.  Note: If you do
not via the test suite, you will need to manually take care of setup, such
as re-generating code, before executing. You will also need to have gnats
running locally.




General Overview

The major components of this test suite include:


	frugalTest.frugal IDL file

	test definitions in tests.json

	Go cross runner

	language specific clients/servers




frugalTest.frugal

The IDL file from which test cases are generated.  This is where tests are
defined and described. Look here if you aren’t sure what a particular test
should be doing.

The FrugalTest service defines every type of value (int, string, map, list,
map of maps, etc.) that could be sent across the wire.  Please contact Jacob
Moss (jacob.moss@workiva.com) if you believe there are additional test cases
that should be added.

The Events scope is used for verifying pub/sub.




tests.json

This json file contains a listing of each supported language, client, server,
transport, and protocol, as well as the bash command required to run a
configuration.




Go cross runner

The Go cross runner is responsible for parsing the json test definitions,
determining the valid client/server pairs, running each pair with a unique
subject, and recording the results.  Test logs are tar’ed in test_logs.tar.gz
using the format : clientName-serverName_transport_protocol_role.log.
Failures are added to unexpected_failures.og (both client and server side logs).




Language specific clients/servers

Each client/server:


	accepts the following flags:
	port (used as the NATS subject, 5 digit random number when called by the
cross runner)
	defaults to 9090 for manual testing





	transport
	defaults to stateless (where supported, otherwise http)





	protocol
	defaults to binary









	calls/handles every case defined in the frugalTest service

	implements middleware (where supported) to
	log
	name of each RPC

	arguments each RPC is called with

	return value of the RPC





	verify middleware works as expected





	throws a non-zero exit code when an error is encountered



For publish/subscribe testing, servers are set up as a subscriber and publish
an acknowledgement upon receipt of a publish.  Clients act as a publisher
(subscribing to the acknowledgement) and verify that an acknowledgement is
returned after publishing.






Contributing

Follow Frugal’s contribution guidelines [https://github.com/Workiva/frugal/blob/master/CONTRIBUTING.md].
Any tests that are added should be added to all languages (where applicable).




Known Issues


	Binary calls across json protocol are serialized differently between go
and java.  #412 [https://github.com/Workiva/frugal/issues/412]











          

      

      

    

  

    
      
          
            
  
cli

[image: Build Status] [https://travis-ci.org/urfave/cli]
[image: Windows Build Status] [https://ci.appveyor.com/project/urfave/cli]
[image: GoDoc] [https://godoc.org/github.com/urfave/cli]
[image: codebeat] [https://codebeat.co/projects/github-com-urfave-cli]
[image: Go Report Card] [https://goreportcard.com/report/urfave/cli]
[image: top level coverage] [http://gocover.io/github.com/urfave/cli] /
[image: altsrc coverage] [http://gocover.io/github.com/urfave/cli/altsrc]

Notice: This is the library formerly known as
github.com/codegangsta/cli – Github will automatically redirect requests
to this repository, but we recommend updating your references for clarity.

cli is a simple, fast, and fun package for building command line apps in Go. The
goal is to enable developers to write fast and distributable command line
applications in an expressive way.


	Overview

	Installation
	Supported platforms

	Using the v2 branch

	Pinning to the v1 releases





	Getting Started

	Examples
	Arguments

	Flags
	Placeholder Values

	Alternate Names

	Ordering

	Values from the Environment

	Values from alternate input sources (YAML, TOML, and others)





	Subcommands

	Subcommands categories

	Exit code

	Bash Completion
	Enabling

	Distribution

	Customization





	Generated Help Text
	Customization





	Version Flag
	Customization

	Full API Example









	Contribution Guidelines




Overview

Command line apps are usually so tiny that there is absolutely no reason why
your code should not be self-documenting. Things like generating help text and
parsing command flags/options should not hinder productivity when writing a
command line app.

This is where cli comes into play. cli makes command line programming fun,
organized, and expressive!




Installation

Make sure you have a working Go environment.  Go version 1.2+ is supported.  See
the install instructions for Go [http://golang.org/doc/install.html].

To install cli, simply run:

$ go get github.com/urfave/cli





Make sure your PATH includes the $GOPATH/bin directory so your commands can
be easily used:

export PATH=$PATH:$GOPATH/bin






Supported platforms

cli is tested against multiple versions of Go on Linux, and against the latest
released version of Go on OS X and Windows.  For full details, see
./.travis.yml and ./appveyor.yml.




Using the v2 branch

Warning: The v2 branch is currently unreleased and considered unstable.

There is currently a long-lived branch named v2 that is intended to land as
the new master branch once development there has settled down.  The current
master branch (mirrored as v1) is being manually merged into v2 on
an irregular human-based schedule, but generally if one wants to “upgrade” to
v2 now and accept the volatility (read: “awesomeness”) that comes along with
that, please use whatever version pinning of your preference, such as via
gopkg.in:

$ go get gopkg.in/urfave/cli.v2





...
import (
  "gopkg.in/urfave/cli.v2" // imports as package "cli"
)
...








Pinning to the v1 releases

Similarly to the section above describing use of the v2 branch, if one wants
to avoid any unexpected compatibility pains once v2 becomes master, then
pinning to v1 is an acceptable option, e.g.:

$ go get gopkg.in/urfave/cli.v1





...
import (
  "gopkg.in/urfave/cli.v1" // imports as package "cli"
)
...





This will pull the latest tagged v1 release (e.g. v1.18.1 at the time of writing).






Getting Started

One of the philosophies behind cli is that an API should be playful and full of
discovery. So a cli app can be as little as one line of code in main().


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
cli.NewApp().Run(os.Args)
}


This app will run and show help text, but is not very useful. Let's give an
action to execute and some help documentation:

<!-- {
  "output": "boom! I say!"
} -->
``` go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Name = "boom"
  app.Usage = "make an explosive entrance"
  app.Action = func(c *cli.Context) error {
    fmt.Println("boom! I say!")
    return nil
  }

  app.Run(os.Args)
}





Running this already gives you a ton of functionality, plus support for things
like subcommands and flags, which are covered below.




Examples

Being a programmer can be a lonely job. Thankfully by the power of automation
that is not the case! Let’s create a greeter app to fend off our demons of
loneliness!

Start by creating a directory named greet, and within it, add a file,
greet.go with the following code in it:


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()
app.Name = “greet”
app.Usage = “fight the loneliness!“
app.Action = func(c *cli.Context) error {
fmt.Println(“Hello friend!”)
return nil
}

app.Run(os.Args)
}


Install our command to the `$GOPATH/bin` directory:





$ go install


Finally run our new command:





$ greet
Hello friend!


cli also generates neat help text:





$ greet help
NAME:
greet - fight the loneliness!

USAGE:
greet [global options] command [command options] [arguments...]

VERSION:
0.0.0

COMMANDS:
help, h  Shows a list of commands or help for one command

GLOBAL OPTIONS
–version Shows version information


### Arguments

You can lookup arguments by calling the `Args` function on `cli.Context`, e.g.:

<!-- {
  "output": "Hello \""
} -->
``` go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Action = func(c *cli.Context) error {
    fmt.Printf("Hello %q", c.Args().Get(0))
    return nil
  }

  app.Run(os.Args)
}






Flags

Setting and querying flags is simple.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang”,
Value: “english”,
Usage: “language for the greeting”,
},
}

app.Action = func(c *cli.Context) error {
name := “Nefertiti”
if c.NArg() > 0 {
name = c.Args().Get(0)
}
if c.String(“lang”) == “spanish” {
fmt.Println(“Hola”, name)
} else {
fmt.Println(“Hello”, name)
}
return nil
}

app.Run(os.Args)
}


You can also set a destination variable for a flag, to which the content will be
scanned.

<!-- {
  "output": "Hello someone"
} -->
``` go
package main

import (
  "os"
  "fmt"

  "github.com/urfave/cli"
)

func main() {
  var language string

  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name:        "lang",
      Value:       "english",
      Usage:       "language for the greeting",
      Destination: &language,
    },
  }

  app.Action = func(c *cli.Context) error {
    name := "someone"
    if c.NArg() > 0 {
      name = c.Args()[0]
    }
    if language == "spanish" {
      fmt.Println("Hola", name)
    } else {
      fmt.Println("Hello", name)
    }
    return nil
  }

  app.Run(os.Args)
}





See full list of flags at http://godoc.org/github.com/urfave/cli


Placeholder Values

Sometimes it’s useful to specify a flag’s value within the usage string itself.
Such placeholders are indicated with back quotes.

For example this:


```go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag{
cli.StringFlag{
Name:  “config, c”,
Usage: “Load configuration from FILE”,
},
}

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE   Load configuration from FILE


Note that only the first placeholder is used. Subsequent back-quoted words will
be left as-is.

#### Alternate Names

You can set alternate (or short) names for flags by providing a comma-delimited
list for the `Name`. e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "&#45;&#45;lang value, &#45;l value.*language for the greeting.*default: \"english\""
} -->
``` go
package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
    },
  }

  app.Run(os.Args)
}





That flag can then be set with --lang spanish or -l spanish. Note that
giving two different forms of the same flag in the same command invocation is an
error.




Ordering

Flags for the application and commands are shown in the order they are defined.
However, it’s possible to sort them from outside this library by using FlagsByName
with sort.

For example this:


``` go
package mainimport (
“os”
“sort”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “Language for the greeting”,
},
cli.StringFlag{
Name: “config, c”,
Usage: “Load configuration from FILE”,
},
}

sort.Sort(cli.FlagsByName(app.Flags))

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE  Load configuration from FILE
–lang value, -l value  Language for the greeting (default: “english”)


#### Values from the Environment

You can also have the default value set from the environment via `EnvVar`.  e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "language for the greeting.*APP_LANG"
} -->
``` go
package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
      EnvVar: "APP_LANG",
    },
  }

  app.Run(os.Args)
}





The EnvVar may also be given as a comma-delimited “cascade”, where the first
environment variable that resolves is used as the default.


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “language for the greeting”,
EnvVar: “LEGACY_COMPAT_LANG,APP_LANG,LANG”,
},
}

app.Run(os.Args)
}


#### Values from alternate input sources (YAML, TOML, and others)

There is a separate package altsrc that adds support for getting flag values
from other file input sources.

Currently supported input source formats:
* YAML
* TOML

In order to get values for a flag from an alternate input source the following
code would be added to wrap an existing cli.Flag like below:

``` go
  altsrc.NewIntFlag(cli.IntFlag{Name: "test"})





Initialization must also occur for these flags. Below is an example initializing
getting data from a yaml file below.

  command.Before = altsrc.InitInputSourceWithContext(command.Flags, NewYamlSourceFromFlagFunc("load"))





The code above will use the “load” string as a flag name to get the file name of
a yaml file from the cli.Context.  It will then use that file name to initialize
the yaml input source for any flags that are defined on that command.  As a note
the “load” flag used would also have to be defined on the command flags in order
for this code snipped to work.

Currently only the aboved specified formats are supported but developers can
add support for other input sources by implementing the
altsrc.InputSourceContext for their given sources.

Here is a more complete sample of a command using YAML support:


``` go
package notmainimport (
“fmt”
“os”

“github.com/urfave/cli”
“github.com/urfave/cli/altsrc”
)

func main() {
app := cli.NewApp()

flags := []cli.Flag{
altsrc.NewIntFlag(cli.IntFlag{Name: “test”}),
cli.StringFlag{Name: “load”},
}

app.Action = func(c *cli.Context) error {
fmt.Println(“yaml ist rad”)
return nil
}

app.Before = altsrc.InitInputSourceWithContext(flags, altsrc.NewYamlSourceFromFlagFunc(“load”))
app.Flags = flags

app.Run(os.Args)
}


### Subcommands

Subcommands can be defined for a more git-like command line app.

<!-- {
  "args": ["template", "add"],
  "output": "new task template: .+"
} -->
```go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name:    "add",
      Aliases: []string{"a"},
      Usage:   "add a task to the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("added task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:    "complete",
      Aliases: []string{"c"},
      Usage:   "complete a task on the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("completed task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:        "template",
      Aliases:     []string{"t"},
      Usage:       "options for task templates",
      Subcommands: []cli.Command{
        {
          Name:  "add",
          Usage: "add a new template",
          Action: func(c *cli.Context) error {
            fmt.Println("new task template: ", c.Args().First())
            return nil
          },
        },
        {
          Name:  "remove",
          Usage: "remove an existing template",
          Action: func(c *cli.Context) error {
            fmt.Println("removed task template: ", c.Args().First())
            return nil
          },
        },
      },
    },
  }

  app.Run(os.Args)
}










Subcommands categories

For additional organization in apps that have many subcommands, you can
associate a category for each command to group them together in the help
output.

E.g.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name: "noop",
    },
    {
      Name:     "add",
      Category: "template",
    },
    {
      Name:     "remove",
      Category: "template",
    },
  }

  app.Run(os.Args)
}





Will include:

COMMANDS:
    noop

  Template actions:
    add
    remove








Exit code

Calling App.Run will not automatically call os.Exit, which means that by
default the exit code will “fall through” to being 0.  An explicit exit code
may be set by returning a non-nil error that fulfills cli.ExitCoder, or a
cli.MultiError that includes an error that fulfills cli.ExitCoder, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Flags = []cli.Flag{
    cli.BoolTFlag{
      Name:  "ginger-crouton",
      Usage: "is it in the soup?",
    },
  }
  app.Action = func(ctx *cli.Context) error {
    if !ctx.Bool("ginger-crouton") {
      return cli.NewExitError("it is not in the soup", 86)
    }
    return nil
  }

  app.Run(os.Args)
}








Bash Completion

You can enable completion commands by setting the EnableBashCompletion
flag on the App object.  By default, this setting will only auto-complete to
show an app’s subcommands, but you can write your own completion methods for
the App or its subcommands.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
tasks := []string{“cook”, “clean”, “laundry”, “eat”, “sleep”, “code”}

app := cli.NewApp()
app.EnableBashCompletion = true
app.Commands = []cli.Command{
{
Name:  “complete”,
Aliases: []string{“c”},
Usage: “complete a task on the list”,
Action: func(c *cli.Context) error {
fmt.Println(“completed task: ”, c.Args().First())
return nil
},
BashComplete: func(c *cli.Context) {
// This will complete if no args are passed
if c.NArg() > 0 {
return
}
for _, t := range tasks {
fmt.Println(t)
}
},
},
}

app.Run(os.Args)
}


#### Enabling

Source the `autocomplete/bash_autocomplete` file in your `.bashrc` file while
setting the `PROG` variable to the name of your program:

`PROG=myprogram source /.../cli/autocomplete/bash_autocomplete`

#### Distribution

Copy `autocomplete/bash_autocomplete` into `/etc/bash_completion.d/` and rename
it to the name of the program you wish to add autocomplete support for (or
automatically install it there if you are distributing a package). Don't forget
to source the file to make it active in the current shell.





sudo cp src/bash_autocomplete /etc/bash_completion.d/
source /etc/bash_completion.d/
  
    
    
    Change Log
    
    

    
 
  
  

    
      
          
            
  
Change Log

ATTN: This project uses semantic versioning [http://semver.org/].


Unreleased [https://github.com/urfave/cli/compare/v1.18.0...HEAD]




[1.19.1] - 2016-11-21


Fixed


	Fixes regression introduced in 1.19.0 where using an ActionFunc as
the Action for a command would cause it to error rather than calling the
function. Should not have a affected declarative cases using func(c *cli.Context) err).

	Shell completion now handles the case where the user specifies
--generate-bash-completion immediately after a flag that takes an argument.
Previously it call the application with --generate-bash-completion as the
flag value.








[1.19.0] - 2016-11-19


Added


	FlagsByName was added to make it easy to sort flags (e.g. sort.Sort(cli.FlagsByName(app.Flags)))

	A Description field was added to App for a more detailed description of
the application (similar to the existing Description field on Command)

	Flag type code generation via go generate

	Write to stderr and exit 1 if action returns non-nil error

	Added support for TOML to the altsrc loader

	SkipArgReorder was added to allow users to skip the argument reordering.
This is useful if you want to consider all “flags” after an argument as
arguments rather than flags (the default behavior of the stdlib flag
library). This is backported functionality from the removal of the flag
reordering [https://github.com/urfave/cli/pull/398] in the unreleased version
2

	For formatted errors (those implementing ErrorFormatter), the errors will
be formatted during output. Compatible with pkg/errors.






Changed


	Raise minimum tested/supported Go version to 1.2+






Fixed


	Consider empty environment variables as set (previously environment variables
with the equivalent of "" would be skipped rather than their value used).

	Return an error if the value in a given environment variable cannot be parsed
as the flag type. Previously these errors were silently swallowed.

	Print full error when an invalid flag is specified (which includes the invalid flag)

	App.Writer defaults to stdout when nil

	If no action is specified on a command or app, the help is now printed instead of panicing

	App.Metadata is initialized automatically now (previously was nil unless initialized)

	Correctly show help message if -h is provided to a subcommand

	context.(Global)IsSet now respects environment variables. Previously it
would return false if a flag was specified in the environment rather than
as an argument

	Removed deprecation warnings to STDERR to avoid them leaking to the end-user

	altsrcs import paths were updated to use gopkg.in/urfave/cli.v1. This
fixes issues that occurred when gopkg.in/urfave/cli.v1 was imported as well
as altsrc where Go would complain that the types didn’t match








[1.18.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user (backported)








1.18.0 [https://github.com/urfave/cli/compare/v1.17.0...v1.18.0] - 2016-06-27


Added


	./runtests test runner with coverage tracking by default

	testing on OS X

	testing on Windows

	UintFlag, Uint64Flag, and Int64Flag types and supporting code






Changed


	Use spaces for alignment in help/usage output instead of tabs, making the
output alignment consistent regardless of tab width






Fixed


	Printing of command aliases in help text

	Printing of visible flags for both struct and struct pointer flags

	Display the help subcommand when using CommandCategories

	No longer swallows panics that occur within the Actions themselves when
detecting the signature of the Action field








[1.17.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.17.0 [https://github.com/urfave/cli/compare/v1.16.0...v1.17.0] - 2016-05-09


Added


	Pluggable flag-level help text rendering via cli.DefaultFlagStringFunc

	context.GlobalBoolT was added as an analogue to context.GlobalBool

	Support for hiding commands by setting Hidden: true – this will hide the
commands in help output






Changed


	Float64Flag, IntFlag, and DurationFlag default values are no longer
quoted in help text output.

	All flag types now include (default: {value}) strings following usage when a
default value can be (reasonably) detected.

	IntSliceFlag and StringSliceFlag usage strings are now more consistent
with non-slice flag types

	Apps now exit with a code of 3 if an unknown subcommand is specified
(previously they printed “No help topic for...”, but still exited 0. This
makes it easier to script around apps built using cli since they can trust
that a 0 exit code indicated a successful execution.

	cleanups based on Go Report Card
feedback [https://goreportcard.com/report/github.com/urfave/cli]








[1.16.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.16.0 [https://github.com/urfave/cli/compare/v1.15.0...v1.16.0] - 2016-05-02


Added


	Hidden field on all flag struct types to omit from generated help text






Changed


	BashCompletionFlag (--enable-bash-completion) is now omitted from
generated help text via the Hidden field






Fixed


	handling of error values in HandleAction and HandleExitCoder








1.15.0 [https://github.com/urfave/cli/compare/v1.14.0...v1.15.0] - 2016-04-30


Added


	This file!

	Support for placeholders in flag usage strings

	App.Metadata map for arbitrary data/state management

	Set and GlobalSet methods on *cli.Context for altering values after
parsing.

	Support for nested lookup of dot-delimited keys in structures loaded from
YAML.






Changed


	The App.Action and Command.Action now prefer a return signature of
func(*cli.Context) error, as defined by cli.ActionFunc.  If a non-nil
error is returned, there may be two outcomes:
	If the error fulfills cli.ExitCoder, then os.Exit will be called
automatically

	Else the error is bubbled up and returned from App.Run





	Specifying an Action with the legacy return signature of
func(*cli.Context) will produce a deprecation message to stderr

	Specifying an Action that is not a func type will produce a non-zero exit
from App.Run

	Specifying an Action func that has an invalid (input) signature will
produce a non-zero exit from App.Run






Deprecated


	[bookmark: deprecated-cli-app-runandexitonerror]
cli.App.RunAndExitOnError, which should now be done by returning an error
that fulfills cli.ExitCoder to cli.App.Run.

	[bookmark: deprecated-cli-app-action-signature] the legacy signature for
cli.App.Action of func(*cli.Context), which should now have a return
signature of func(*cli.Context) error, as defined by cli.ActionFunc.






Fixed


	Added missing *cli.Context.GlobalFloat64 method








1.14.0 [https://github.com/urfave/cli/compare/v1.13.0...v1.14.0] - 2016-04-03 (backfilled 2016-04-25)


Added


	Codebeat badge

	Support for categorization via CategorizedHelp and Categories on app.






Changed


	Use filepath.Base instead of path.Base in Name and HelpName.






Fixed


	Ensure version is not shown in help text when HideVersion set.








1.13.0 [https://github.com/urfave/cli/compare/v1.12.0...v1.13.0] - 2016-03-06 (backfilled 2016-04-25)


Added


	YAML file input support.

	NArg method on context.








1.12.0 [https://github.com/urfave/cli/compare/v1.11.1...v1.12.0] - 2016-02-17 (backfilled 2016-04-25)


Added


	Custom usage error handling.

	Custom text support in USAGE section of help output.

	Improved help messages for empty strings.

	AppVeyor CI configuration.






Changed


	Removed panic from default help printer func.

	De-duping and optimizations.






Fixed


	Correctly handle Before/After at command level when no subcommands.

	Case of literal - argument causing flag reordering.

	Environment variable hints on Windows.

	Docs updates.








1.11.1 [https://github.com/urfave/cli/compare/v1.11.0...v1.11.1] - 2015-12-21 (backfilled 2016-04-25)


Changed


	Use path.Base in Name and HelpName

	Export GetName on flag types.






Fixed


	Flag parsing when skipping is enabled.

	Test output cleanup.

	Move completion check to account for empty input case.








1.11.0 [https://github.com/urfave/cli/compare/v1.10.2...v1.11.0] - 2015-11-15 (backfilled 2016-04-25)


Added


	Destination scan support for flags.

	Testing against tip in Travis CI config.






Changed


	Go version in Travis CI config.






Fixed


	Removed redundant tests.

	Use correct example naming in tests.








1.10.2 [https://github.com/urfave/cli/compare/v1.10.1...v1.10.2] - 2015-10-29 (backfilled 2016-04-25)


Fixed


	Remove unused var in bash completion.








1.10.1 [https://github.com/urfave/cli/compare/v1.10.0...v1.10.1] - 2015-10-21 (backfilled 2016-04-25)


Added


	Coverage and reference logos in README.






Fixed


	Use specified values in help and version parsing.

	Only display app version and help message once.








1.10.0 [https://github.com/urfave/cli/compare/v1.9.0...v1.10.0] - 2015-10-06 (backfilled 2016-04-25)


Added


	More tests for existing functionality.

	ArgsUsage at app and command level for help text flexibility.






Fixed


	Honor HideHelp and HideVersion in App.Run.

	Remove juvenile word from README.








1.9.0 [https://github.com/urfave/cli/compare/v1.8.0...v1.9.0] - 2015-09-08 (backfilled 2016-04-25)


Added


	FullName on command with accompanying help output update.

	Set default $PROG in bash completion.






Changed


	Docs formatting.






Fixed


	Removed self-referential imports in tests.








1.8.0 [https://github.com/urfave/cli/compare/v1.7.1...v1.8.0] - 2015-06-30 (backfilled 2016-04-25)


Added


	Support for Copyright at app level.

	Parent func at context level to walk up context lineage.






Fixed


	Global flag processing at top level.








1.7.1 [https://github.com/urfave/cli/compare/v1.7.0...v1.7.1] - 2015-06-11 (backfilled 2016-04-25)


Added


	Aggregate errors from Before/After funcs.

	Doc comments on flag structs.

	Include non-global flags when checking version and help.

	Travis CI config updates.






Fixed


	Ensure slice type flags have non-nil values.

	Collect global flags from the full command hierarchy.

	Docs prose.








1.7.0 [https://github.com/urfave/cli/compare/v1.6.0...v1.7.0] - 2015-05-03 (backfilled 2016-04-25)


Changed


	HelpPrinter signature includes output writer.






Fixed


	Specify go 1.1+ in docs.

	Set Writer when running command as app.








1.6.0 [https://github.com/urfave/cli/compare/v1.5.0...v1.6.0] - 2015-03-23 (backfilled 2016-04-25)


Added


	Multiple author support.

	NumFlags at context level.

	Aliases at command level.






Deprecated


	ShortName at command level.






Fixed


	Subcommand help output.

	Backward compatible support for deprecated Author and Email fields.

	Docs regarding Names/Aliases.








1.5.0 [https://github.com/urfave/cli/compare/v1.4.1...v1.5.0] - 2015-02-20 (backfilled 2016-04-25)


Added


	After hook func support at app and command level.






Fixed


	Use parsed context when running command as subcommand.

	Docs prose.








1.4.1 [https://github.com/urfave/cli/compare/v1.4.0...v1.4.1] - 2015-01-09 (backfilled 2016-04-25)


Added


	Support for hiding -h / --help flags, but not help subcommand.

	Stop flag parsing after --.






Fixed


	Help text for generic flags to specify single value.

	Use double quotes in output for defaults.

	Use ParseInt instead of ParseUint for int environment var values.

	Use 0 as base when parsing int environment var values.








1.4.0 [https://github.com/urfave/cli/compare/v1.3.1...v1.4.0] - 2014-12-12 (backfilled 2016-04-25)


Added


	Support for environment variable lookup “cascade”.

	Support for Stdout on app for output redirection.






Fixed


	Print command help instead of app help in ShowCommandHelp.








1.3.1 [https://github.com/urfave/cli/compare/v1.3.0...v1.3.1] - 2014-11-13 (backfilled 2016-04-25)


Added


	Docs and example code updates.






Changed


	Default -v / --version flag made optional.








1.3.0 [https://github.com/urfave/cli/compare/v1.2.0...v1.3.0] - 2014-08-10 (backfilled 2016-04-25)


Added


	FlagNames at context level.

	Exposed VersionPrinter var for more control over version output.

	Zsh completion hook.

	AUTHOR section in default app help template.

	Contribution guidelines.

	DurationFlag type.








1.2.0 [https://github.com/urfave/cli/compare/v1.1.0...v1.2.0] - 2014-08-02


Added


	Support for environment variable defaults on flags plus tests.








1.1.0 [https://github.com/urfave/cli/compare/v1.0.0...v1.1.0] - 2014-07-15


Added


	Bash completion.

	Optional hiding of built-in help command.

	Optional skipping of flag parsing at command level.

	Author, Email, and Compiled metadata on app.

	Before hook func support at app and command level.

	CommandNotFound func support at app level.

	Command reference available on context.

	GenericFlag type.

	Float64Flag type.

	BoolTFlag type.

	IsSet flag helper on context.

	More flag lookup funcs at context level.

	More tests &amp;

 docs.






Changed


	Help template updates to account for presence/absence of flags.

	Separated subcommand help template.

	Exposed HelpPrinter var for more control over help output.








1.0.0 [https://github.com/urfave/cli/compare/v0.1.0...v1.0.0] - 2013-11-01


Added


	help flag in default app flag set and each command flag set.

	Custom handling of argument parsing errors.

	Command lookup by name at app level.

	StringSliceFlag type and supporting StringSlice type.

	IntSliceFlag type and supporting IntSlice type.

	Slice type flag lookups by name at context level.

	Export of app and command help functions.

	More tests &amp;

 docs.








0.1.0 - 2013-07-22


Added


	Initial implementation.











          

      

      

    

  

  
    
    
    YAML support for the Go language
    
    

    
 
  
  

    
      
          
            
  
YAML support for the Go language


Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.




Compatibility

The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.




Installation and usage

The import path for the package is gopkg.in/yaml.v2.

To install it, run:

go get gopkg.in/yaml.v2








API documentation

If opened in a browser, the import path itself leads to the API documentation:


	https://gopkg.in/yaml.v2






API stability

The package API for yaml v2 will remain stable as described in gopkg.in [https://gopkg.in].




License

The yaml package is licensed under the Apache License 2.0. Please see the LICENSE file for details.




Example

package main

import (
        "fmt"
        "log"

        "gopkg.in/yaml.v2"
)

var data = `
a: Easy!
b:
  c: 2
  d: [3, 4]
`

type T struct {
        A string
        B struct {
                RenamedC int   `yaml:"c"`
                D        []int `yaml:",flow"`
        }
}

func main() {
        t := T{}
    
        err := yaml.Unmarshal([]byte(data), &t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t:\n%v\n\n", t)
    
        d, err := yaml.Marshal(&t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t dump:\n%s\n\n", string(d))
    
        m := make(map[interface{}]interface{})
    
        err = yaml.Unmarshal([]byte(data), &m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m:\n%v\n\n", m)
    
        d, err = yaml.Marshal(&m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m dump:\n%s\n\n", string(d))
}





This example will generate the following output:

--- t:
{Easy! {2 [3 4]}}

--- t dump:
a: Easy!
b:
  c: 2
  d: [3, 4]


--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]

--- m dump:
a: Easy!
b:
  c: 2
  d:
  - 3
  - 4











          

      

      

    

  

  
    
    
    What is Frugal?
    
    

    
 
  
  

    
      
          
            
  
What is Frugal?

Frugal is an extension of Apache Thrift [https://thrift.apache.org/] which
provides additional features and improvements. Conceptually, Frugal is a
superset of Thrift, meaning valid Thrift is also valid Frugal (there are some
caveats to this).

Frugal makes use of several core parts of Thrift, including protocols and
transports. This means most of the components that ship with Thrift “just work”
out of the box. Frugal wraps many of these components to extend their
functionality.

See the glossary for definitions of Frugal concepts.




Why does Frugal exist?

Frugal was created to address many of Thrift’s shortcomings without completely
reinventing the wheel. Thrift is a solid, mature RPC framework used widely in
production systems. However, it has several key problems.


Problems with Thrift


	Head-of-line blocking: a single, slow request will block any following
requests for a client.

	Out-of-order responses: an out-of-order response puts a Thrift transport in a
bad state, requiring it to be torn down and reestablished. E.g. if a slow
request times out at the client, the client issues a subsequent request, and
a response comes back for the first request, the client blows up.

	Concurrency: a Thrift client cannot be shared between multiple threads of
execution, requiring each thread to have its own client issuing requests
sequentially. This, combined with head-of-line blocking, is a major
performance killer.

	RPC timeouts: Thrift does not provide good facilities for per-request
timeouts, instead opting for a global transport read timeout.

	Request headers: Thrift does not provide support for request metadata, making
it difficult to implement things like authentication and authorization.
Instead, you are required to bake these things into your IDL. The problem
with this is it puts the onus on service providers rather than allowing an
API gateway or middleware to perform these functions in a centralized way.

	Middleware: Thrift does not have any support for client or server middleware.
This means clients must be wrapped to implement interceptor logic and
middleware code must be duplicated within handler functions. This makes it
impossible to implement AOP-style logic in a clean, DRY way.

	RPC-only: Thrift has limited support for asynchronous messaging patterns, and
even asynchronous RPC is largely language-dependent and susceptible to the
head-of-line blocking and out-of-order response problems.






Frugal Features

Frugal was built to address these concerns. Below are some of the things it
provides.


	Request multiplexing: client requests are fully multiplexed, allowing them to
be issued concurrently while simultaneously avoiding the head-of-line
blocking and out-of-order response problems. This also lays some groundwork
for asynchronous messaging patterns.

	Thread-safety: clients can be safely shared between multiple threads in which
requests can be made in parallel.

	Pub/sub: IDL and code-generation extensions for defining pub/sub APIs in a
type-safe way.

	Request context: a first-class request context object is added to every
operation which allows defining request/response headers and per-request
timeouts. By making the context part of the Frugal protocol, headers can be
introspected or even injected by external middleware. This context could be
used to send OAuth2 tokens and user-context information, avoiding the need to
include it everywhere in your IDL and handler logic. Correlation IDs for
distributed tracing purposes are also built into the request context.

	Middleware: client- and server- side middleware is supported for RPC and
pub/sub APIs. This allows you to implement interceptor logic around handler
functions, e.g. for authentication, logging, or retry policies.









          

      

      

    

  

  
    
    
    Glossary
    
    

    
 
  
  

    
      
          
            
  

**Table of Contents**  *generated with [DocToc](https://github.com/thlorenz/doctoc)*
	Glossary
	FAsyncCallback*

	FContext

	FProcessor

	FProcessorFunction*

	FProtocol

	FProtocolFactory

	FScopeProvider

	FPublisherTransport*

	FSubscriberTransport*

	FPublisherTransportFactory*

	FSubscriberTransportFactory*

	FServer

	FServiceProvider

	FSubscription

	FRegistry*

	FTransport

	FTransportFactory

	FTransportMonitor

	Scope

	Service

	ServiceMiddleware








Glossary

This describes at a high level some of the concepts found in Frugal. Most
components in Frugal are prefixed with “F”, i.e. “FTransport”, in order to
differentiate from Thrift, which prefixes things with “T”. Components marked
with an asterisk are internal details of Frugal and not something a user
interacts with directly but are documented for posterity. As a result, some
internal components may vary between language implementations.


FAsyncCallback*

FAsyncCallback is an internal callback which is constructed by generated code
and invoked by an FRegistry when a RPC response is received. In other words,
it’s used to complete RPCs. The operation ID on FContext is used to look up the
appropriate callback. FAsyncCallback is passed an in-memory TTransport which
wraps the complete message. The callback returns an error or throws an
exception if an unrecoverable error occurs and the transport needs to be
shutdown.




FContext

FContext is the context for a Frugal message. Every RPC has an FContext, which
can be used to set request headers, response headers, and the request timeout.
The default timeout is five seconds. An FContext is also sent with every publish
message which is then received by subscribers.

In addition to headers, the FContext also contains a correlation ID which can
consumed by the user and used for distributed tracing purposes. A random
correlation ID is generated for each FContext if one is not provided.

FContext also plays a key role in Frugal’s multiplexing support. A unique,
per-request operation ID is set on every FContext before a request is made.
This operation ID is sent in the request and included in the response, which is
then used to correlate a response to a request. The operation ID is an internal
implementation detail and is not exposed to the user.

An FContext should belong to a single request for the lifetime of that request.
It can be reused once the request has completed, though they should generally
not be reused.




FProcessor

FProcessor is Frugal’s equivalent of Thrift’s TProcessor. It’s a generic object
which operates upon an input stream and writes to an output stream.
Specifically, an FProcessor is provided to an FServer in order to wire up a
service handler to process requests.




FProcessorFunction*

FProcessorFunction is used internally by generated code. An FProcessor
registers an FProcessorFunction for each service method. Like FProcessor, an
FProcessorFunction exposes a single process call, which is used to handle a
method invocation.




FProtocol

FProtocol is Frugal’s equivalent of Thrift’s TProtocol. It defines the
serialization protocol used for messages, such as JSON, binary, etc. FProtocol
actually extends TProtocol and adds support for serializing FContext. In
practice, FProtocol simply wraps a TProtocol and uses Thrift’s built-in
serialization. FContext is encoded before the TProtocol serialization of the
message using a simple binary protocol. See the
protocol documentation for more details.




FProtocolFactory

FProtocolFactory creates new FProtocol instances. It takes a TProtocolFactory
and a TTransport and returns an FProtocol which wraps a TProtocol produced by
the TProtocolFactory. The TProtocol itself wraps the provided TTransport. This
makes it easy to produce an FProtocol which uses any existing Thrift transports
and protocols in a composable manner.




FScopeProvider

FScopeProvider is used exclusively for pub/sub and produces FScopeTransports
and FProtocols for use by pub/sub scopes. It does this by wrapping an
FPublisherTransportFactory, an FSubscriberTransportFactory, and FProtocolFactory.




FPublisherTransport*

FPublisherTransport is a transport that publishes messages to a pub/sub topic.




FSubscriberTransport*

FSubscriberTransport is a transport that subscribes to a pub/sub topic. It receives
and processes messages published to the subscribed topic.




FPublisherTransportFactory*

FPublisherTransportFactory produces FPublisherTransports, and is generally used by
an FScopeProvider.




FSubscriberTransportFactory*

FSubscriberTransportFactory produces FSubscriberTransports, and is generally used
by an FScopeProvider.




FServer

FServer is Frugal’s equivalent of Thrift’s TServer. It’s used to run a Frugal
RPC service by executing an FProcessor on client connections.

Currently, Frugal includes two implementations of FServer: FSimpleServer, which
is a basic, accept-loop based server that supports traditional Thrift
TServerTransports, and FNatsServer, which is an implementation that uses
NATS [https://nats.io/] as the underlying transport.




FServiceProvider

FServiceProvider is the service equivalent of FScopeProvider. It produces
FTransports and FProtocols for use by RPC service clients.




FSubscription

FSubscription is a subscription to a pub/sub topic created by a scope. The
topic subscription is actually handled by an FSubscriberTransport, which the
FSubscription wraps. Each FSubscription should have its own FSubscriberTransport.
The FSubscription is used to unsubscribe from the topic.




FRegistry*

FRegistry is responsible for multiplexing and handling received messages.
Typically registries are only used by a client FTransport, which is making RPCs.
When a request is made, an FAsyncCallback is registered to an FContext. When a
response for the FContext is received, the FAsyncCallback is looked up,
executed, and unregistered.




FTransport

FTransport is Frugal’s equivalent of Thrift’s TTransport. FTransport is
comparable to Thrift’s TTransport in that it represents the transport layer
for frugal clients. However, frugal is callback based and sends only framed
data. Due to this, instead of read, write, and flush methods, FTransport has
a send method that sends framed frugal messages. To handle callback data, an
FTransport also has an FRegistry, so it provides methods for registering
and unregistering an FAsyncCallback to an FContext.

Most Frugal language libraries include an FAdapterTransport implementation, which
allows a Thrift TTransport to be used as an FTransport.




FTransportFactory

FTransportFactory produces FTransports by wrapping a provided TTransport.




FTransportMonitor

FTransportMonitor watches and heals an FTransport. It exposes a number of hooks
which can be used to add logic around FTransport events, such as unexpected
disconnects, expected disconnects, failed reconnects, and successful
reconnects.

Most Frugal implementations include a base FTransportMonitor which implements
basic reconnect logic with backoffs and max attempts. This can be extended or
reimplemented to provide custom logic.




Scope

Scopes do not map directly to an actual object but are an important concept
within Frugal. A scope is defined in a Frugal IDL file, and it specifies a
pub/sub API. Each scope has one or more operations, each of which define a
pub/sub event. Frugal takes this definition and generates the corresponding
publisher and subscriber code.

The pub/sub topic, which is an implementation detail of the scope, is
constructed by Frugal and consists of the scope and operation names. However, a
scope prefix can be specified, which is prepended to the topic. This prefix can
have user-defined variables, allowing runtime subscription matching.




Service

Services do not map directly to an actual object but, like scopes, are an
important concept. A service is defined in a Frugal IDL file, and it specifies
a RPC API. Each service has one or more methods which can be invoked remotely.
Frugal takes this definition and generates the corresponding client and server
interface.




ServiceMiddleware

ServiceMiddleware is used to implement interceptor logic around API calls. This
can be used, for example, to implement retry policies on service calls,
logging, telemetry, or authentication and authorization. ServiceMiddleware can
be applied to both RPC services and pub/sub scopes.







          

      

      

    

  

  
    
    
    Protocol
    
    

    
 
  
  

    
      
          
            
  
Protocol

This describes the binary protocol used to encode FContext by an FProtocol.

FProtocol serializes FContext headers using a custom protocol before the normal
serialization of the Thrift message, as produced by TProtocol. FProtocol is a
framed protocol, meaning the length of the serialized message, or frame, is
prepended to the frame itself. As such, a serialized Frugal message looks like
the following on the wire at a high level:

+------------+------------------+-------------------+
| frame size | FContext headers | TProtocol message |
+------------+------------------+-------------------+





The serialization of the TProtocol message is handled entirely by the Thrift
TProtocol. For example, this could itself be framed if a TFramedTransport is
used. However, the frame size and FContext headers are serialized by FProtocol.
The header protocol reserves a single byte for versioning purposes. Currently,
only v0 is supported.

The complete binary wire layout is documented below. Network byte order is
assumed.

   0     1     2     3     4     5     6     7     8     9     10    11    12    13    14  ...
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+...+-----+-----+-----+-----+-----+-----+-----+...+-----+...+-----+-----+...+-----+
|     frame size n      | ver |    headers size m     |  header name size k   |  0  |  1  |...| k-1 |  header value size v  |  0  |  1  |...| v-1 |...|  0  |  1  |...| t-1 |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+...+-----+-----+-----+-----+-----+-----|-----+...+-----+...+-----+-----+...+-----+
|<-------4 bytes------->|<----------5 bytes---------->|<-------4 bytes------->|<------k bytes------>|<-------4 bytes------->|<------v bytes------>|   |<------t bytes------>|
                                                      |<-------------------------------------------m bytes------------------------------------------->|
|<------------------------------------------------------------------------------n bytes------------------------------------------------------------------------------------>|





| Name                | Size    | Definition                                                   |
|———————|———|————————————————————–|
| frame size n        | 4 bytes | unsigned integer representing length of entire frame         |
| ver                 | 1 byte  | unsigned integer representing header protocol version        |
| headers size m      | 4 bytes | unsigned integer representing length of header data          |
| header name size k  | 4 bytes | unsigned integer representing the length of the header name  |
| header name         | k bytes | the header name                                              |
| header value size v | 4 bytes | unsigned integer representing the length of the header value |
| header value        | v bytes | the header value                                             |
| Thrift message      | t bytes | the TProtocol-serialized message                             |
Header key-value pairs are repeated





          

      

      

    

  

  
    
    
    frugal-java
    
    

    
 
  
  

    
      
          
            
  
frugal-java

Java library for Frugal [https://github.com/Workiva/frugal].





          

      

      

    

  

  
    
    
    frugal
    
    

    
 
  
  

    
      
          
            
  
frugal

Frugal [https://github.com/Workiva/frugal] is an extension of
Apache Thrift [https://thrift.apache.org/] which provides additional
functionality. Specifically, it includes support for request headers,
request multiplexing, thread safety, and code-generated pub/sub APIs.
Frugal is intended to act as a superset of Thrift, meaning it implements
the same functionality as Thrift with some additional features. For a
more detailed explanation, see the
documentation [https://github.com/Workiva/frugal/tree/master/documentation].

An example [https://github.com/Workiva/frugal/tree/master/examples] of
using Frugal (including a dart client) is provided.





          

      

      

    

  

  
    
    
    frugal-go
    
    

    
 
  
  

    
      
          
            
  
frugal-go

Go library for Frugal [https://github.com/Workiva/frugal].





          

      

      

    

  

  
    
    
    Logrus
    
    

    
 
  
  

    
      
          
            
  
Logrus [image: :walrus:] 

[image: Build Status] [https://travis-ci.org/Sirupsen/logrus] 

[image: GoDoc] [https://godoc.org/github.com/Sirupsen/logrus]

Logrus is a structured logger for Go (golang), completely API compatible with
the standard library logger. [Godoc][godoc]. Please note the Logrus API is not
yet stable (pre 1.0). Logrus itself is completely stable and has been used in
many large deployments. The core API is unlikely to change much but please
version control your Logrus to make sure you aren’t fetching latest master on
every build.

Nicely color-coded in development (when a TTY is attached, otherwise just
plain text):

[image: Colored]

With log.SetFormatter(&log.JSONFormatter{}), for easy parsing by logstash
or Splunk:

{"animal":"walrus","level":"info","msg":"A group of walrus emerges from the
ocean","size":10,"time":"2014-03-10 19:57:38.562264131 -0400 EDT"}

{"level":"warning","msg":"The group's number increased tremendously!",
"number":122,"omg":true,"time":"2014-03-10 19:57:38.562471297 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"A giant walrus appears!",
"size":10,"time":"2014-03-10 19:57:38.562500591 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"Tremendously sized cow enters the ocean.",
"size":9,"time":"2014-03-10 19:57:38.562527896 -0400 EDT"}

{"level":"fatal","msg":"The ice breaks!","number":100,"omg":true,
"time":"2014-03-10 19:57:38.562543128 -0400 EDT"}





With the default log.SetFormatter(&log.TextFormatter{}) when a TTY is not
attached, the output is compatible with the
logfmt [http://godoc.org/github.com/kr/logfmt] format:

time="2015-03-26T01:27:38-04:00" level=debug msg="Started observing beach" animal=walrus number=8
time="2015-03-26T01:27:38-04:00" level=info msg="A group of walrus emerges from the ocean" animal=walrus size=10
time="2015-03-26T01:27:38-04:00" level=warning msg="The group's number increased tremendously!" number=122 omg=true
time="2015-03-26T01:27:38-04:00" level=debug msg="Temperature changes" temperature=-4
time="2015-03-26T01:27:38-04:00" level=panic msg="It's over 9000!" animal=orca size=9009
time="2015-03-26T01:27:38-04:00" level=fatal msg="The ice breaks!" err=&{0x2082280c0 map[animal:orca size:9009] 2015-03-26 01:27:38.441574009 -0400 EDT panic It's over 9000!} number=100 omg=true
exit status 1






Example

The simplest way to use Logrus is simply the package-level exported logger:

package main

import (
  log "github.com/Sirupsen/logrus"
)

func main() {
  log.WithFields(log.Fields{
    "animal": "walrus",
  }).Info("A walrus appears")
}





Note that it’s completely api-compatible with the stdlib logger, so you can
replace your log imports everywhere with log "github.com/Sirupsen/logrus"
and you’ll now have the flexibility of Logrus. You can customize it all you
want:

package main

import (
  "os"
  log "github.com/Sirupsen/logrus"
)

func init() {
  // Log as JSON instead of the default ASCII formatter.
  log.SetFormatter(&log.JSONFormatter{})

  // Output to stderr instead of stdout, could also be a file.
  log.SetOutput(os.Stderr)

  // Only log the warning severity or above.
  log.SetLevel(log.WarnLevel)
}

func main() {
  log.WithFields(log.Fields{
    "animal": "walrus",
    "size":   10,
  }).Info("A group of walrus emerges from the ocean")

  log.WithFields(log.Fields{
    "omg":    true,
    "number": 122,
  }).Warn("The group's number increased tremendously!")

  log.WithFields(log.Fields{
    "omg":    true,
    "number": 100,
  }).Fatal("The ice breaks!")

  // A common pattern is to re-use fields between logging statements by re-using
  // the logrus.Entry returned from WithFields()
  contextLogger := log.WithFields(log.Fields{
    "common": "this is a common field",
    "other": "I also should be logged always",
  })

  contextLogger.Info("I'll be logged with common and other field")
  contextLogger.Info("Me too")
}





For more advanced usage such as logging to multiple locations from the same
application, you can also create an instance of the logrus Logger:

package main

import (
  "github.com/Sirupsen/logrus"
)

// Create a new instance of the logger. You can have any number of instances.
var log = logrus.New()

func main() {
  // The API for setting attributes is a little different than the package level
  // exported logger. See Godoc.
  log.Out = os.Stderr

  log.WithFields(logrus.Fields{
    "animal": "walrus",
    "size":   10,
  }).Info("A group of walrus emerges from the ocean")
}








Fields

Logrus encourages careful, structured logging though logging fields instead of
long, unparseable error messages. For example, instead of: log.Fatalf("Failed to send event %s to topic %s with key %d"), you should log the much more
discoverable:

log.WithFields(log.Fields{
  "event": event,
  "topic": topic,
  "key": key,
}).Fatal("Failed to send event")





We’ve found this API forces you to think about logging in a way that produces
much more useful logging messages. We’ve been in countless situations where just
a single added field to a log statement that was already there would’ve saved us
hours. The WithFields call is optional.

In general, with Logrus using any of the printf-family functions should be
seen as a hint you should add a field, however, you can still use the
printf-family functions with Logrus.




Hooks

You can add hooks for logging levels. For example to send errors to an exception
tracking service on Error, Fatal and Panic, info to StatsD or log to
multiple places simultaneously, e.g. syslog.

Logrus comes with built-in hooks. Add those, or your custom hook, in
init:

import (
  log "github.com/Sirupsen/logrus"
  "gopkg.in/gemnasium/logrus-airbrake-hook.v2" // the package is named "aibrake"
  logrus_syslog "github.com/Sirupsen/logrus/hooks/syslog"
  "log/syslog"
)

func init() {

  // Use the Airbrake hook to report errors that have Error severity or above to
  // an exception tracker. You can create custom hooks, see the Hooks section.
  log.AddHook(airbrake.NewHook(123, "xyz", "production"))

  hook, err := logrus_syslog.NewSyslogHook("udp", "localhost:514", syslog.LOG_INFO, "")
  if err != nil {
    log.Error("Unable to connect to local syslog daemon")
  } else {
    log.AddHook(hook)
  }
}





Note: Syslog hook also support connecting to local syslog (Ex. “/dev/log” or “/var/run/syslog” or “/var/run/log”). For the detail, please check the syslog hook README.

| Hook  | Description |
| —– | ———– |
| Airbrake [https://github.com/gemnasium/logrus-airbrake-hook] | Send errors to the Airbrake API V3. Uses the official gobrake [https://github.com/airbrake/gobrake] behind the scenes. |
| Airbrake “legacy” [https://github.com/gemnasium/logrus-airbrake-legacy-hook] | Send errors to an exception tracking service compatible with the Airbrake API V2. Uses airbrake-go [https://github.com/tobi/airbrake-go] behind the scenes. |
| Papertrail [https://github.com/polds/logrus-papertrail-hook] | Send errors to the Papertrail [https://papertrailapp.com] hosted logging service via UDP. |
| Syslog [https://github.com/Sirupsen/logrus/blob/master/hooks/syslog/syslog.go] | Send errors to remote syslog server. Uses standard library log/syslog behind the scenes. |
| Bugsnag [https://github.com/Shopify/logrus-bugsnag/blob/master/bugsnag.go] | Send errors to the Bugsnag exception tracking service. |
| Sentry [https://github.com/evalphobia/logrus_sentry] | Send errors to the Sentry error logging and aggregation service. |
| Hiprus [https://github.com/nubo/hiprus] | Send errors to a channel in hipchat. |
| Logrusly [https://github.com/sebest/logrusly] | Send logs to Loggly [https://www.loggly.com/] |
| Slackrus [https://github.com/johntdyer/slackrus] | Hook for Slack chat. |
| Journalhook [https://github.com/wercker/journalhook] | Hook for logging to systemd-journald |
| Graylog [https://github.com/gemnasium/logrus-graylog-hook] | Hook for logging to Graylog [http://graylog2.org/] |
| Raygun [https://github.com/squirkle/logrus-raygun-hook] | Hook for logging to Raygun.io [http://raygun.io/] |
| LFShook [https://github.com/rifflock/lfshook] | Hook for logging to the local filesystem |
| Honeybadger [https://github.com/agonzalezro/logrus_honeybadger] | Hook for sending exceptions to Honeybadger |
| Mail [https://github.com/zbindenren/logrus_mail] | Hook for sending exceptions via mail |
| Rollrus [https://github.com/heroku/rollrus] | Hook for sending errors to rollbar |
| Fluentd [https://github.com/evalphobia/logrus_fluent] | Hook for logging to fluentd |
| Mongodb [https://github.com/weekface/mgorus] | Hook for logging to mongodb |
| [Influxus] (http://github.com/vlad-doru/influxus) | Hook for concurrently logging to [InfluxDB] (http://influxdata.com/) |
| InfluxDB [https://github.com/Abramovic/logrus_influxdb] | Hook for logging to influxdb |
| Octokit [https://github.com/dorajistyle/logrus-octokit-hook] | Hook for logging to github via octokit |
| DeferPanic [https://github.com/deferpanic/dp-logrus] | Hook for logging to DeferPanic |
| Redis-Hook [https://github.com/rogierlommers/logrus-redis-hook] | Hook for logging to a ELK stack (through Redis) |
| Amqp-Hook [https://github.com/vladoatanasov/logrus_amqp] | Hook for logging to Amqp broker (Like RabbitMQ) |
| KafkaLogrus [https://github.com/goibibo/KafkaLogrus] | Hook for logging to kafka |
| Typetalk [https://github.com/dragon3/logrus-typetalk-hook] | Hook for logging to Typetalk [https://www.typetalk.in/] |
| ElasticSearch [https://github.com/sohlich/elogrus] | Hook for logging to ElasticSearch|
| Sumorus [https://github.com/doublefree/sumorus] | Hook for logging to SumoLogic [https://www.sumologic.com/]|
| Scribe [https://github.com/sagar8192/logrus-scribe-hook] | Hook for logging to Scribe [https://github.com/facebookarchive/scribe]|
| Logstash [https://github.com/bshuster-repo/logrus-logstash-hook] | Hook for logging to Logstash [https://www.elastic.co/products/logstash] |
| logz.io [https://github.com/ripcurld00d/logrus-logzio-hook] | Hook for logging to logz.io [https://logz.io], a Log as a Service using Logstash |
| Logmatic.io [https://github.com/logmatic/logmatic-go] | Hook for logging to Logmatic.io [http://logmatic.io/] |
| Pushover [https://github.com/toorop/logrus_pushover] | Send error via Pushover [https://pushover.net] |




Level logging

Logrus has six logging levels: Debug, Info, Warning, Error, Fatal and Panic.

log.Debug("Useful debugging information.")
log.Info("Something noteworthy happened!")
log.Warn("You should probably take a look at this.")
log.Error("Something failed but I'm not quitting.")
// Calls os.Exit(1) after logging
log.Fatal("Bye.")
// Calls panic() after logging
log.Panic("I'm bailing.")





You can set the logging level on a Logger, then it will only log entries with
that severity or anything above it:

// Will log anything that is info or above (warn, error, fatal, panic). Default.
log.SetLevel(log.InfoLevel)





It may be useful to set log.Level = logrus.DebugLevel in a debug or verbose
environment if your application has that.




Entries

Besides the fields added with WithField or WithFields some fields are
automatically added to all logging events:


	time. The timestamp when the entry was created.

	msg. The logging message passed to {Info,Warn,Error,Fatal,Panic} after
the AddFields call. E.g. Failed to send event.

	level. The logging level. E.g. info.






Environments

Logrus has no notion of environment.

If you wish for hooks and formatters to only be used in specific environments,
you should handle that yourself. For example, if your application has a global
variable Environment, which is a string representation of the environment you
could do:

import (
  log "github.com/Sirupsen/logrus"
)

init() {
  // do something here to set environment depending on an environment variable
  // or command-line flag
  if Environment == "production" {
    log.SetFormatter(&log.JSONFormatter{})
  } else {
    // The TextFormatter is default, you don't actually have to do this.
    log.SetFormatter(&log.TextFormatter{})
  }
}





This configuration is how logrus was intended to be used, but JSON in
production is mostly only useful if you do log aggregation with tools like
Splunk or Logstash.




Formatters

The built-in logging formatters are:


	logrus.TextFormatter. Logs the event in colors if stdout is a tty, otherwise
without colors.
	Note: to force colored output when there is no TTY, set the ForceColors
field to true.  To force no colored output even if there is a TTY  set the
DisableColors field to true





	logrus.JSONFormatter. Logs fields as JSON.



Third party logging formatters:


	logstash [https://github.com/bshuster-repo/logrus-logstash-hook]. Logs fields as Logstash [http://logstash.net] Events.

	prefixed [https://github.com/x-cray/logrus-prefixed-formatter]. Displays log entry source along with alternative layout.

	zalgo [https://github.com/aybabtme/logzalgo]. Invoking the P͉̫o̳̼̊w̖͈̰͎e̬͔̭͂r͚̼̹̲ ̫͓͉̳͈ō̠͕͖̚f̝͍̠ ͕̲̞͖͑Z̖̫̤̫ͪa͉̬͈̗l͖͎g̳̥o̰̥̅!̣͔̲̻͊̄ ̙̘̦̹̦.



You can define your formatter by implementing the Formatter interface,
requiring a Format method. Format takes an *Entry. entry.Data is a
Fields type (map[string]interface{}) with all your fields as well as the
default ones (see Entries section above):

type MyJSONFormatter struct {
}

log.SetFormatter(new(MyJSONFormatter))

func (f *MyJSONFormatter) Format(entry *Entry) ([]byte, error) {
  // Note this doesn't include Time, Level and Message which are available on
  // the Entry. Consult `godoc` on information about those fields or read the
  // source of the official loggers.
  serialized, err := json.Marshal(entry.Data)
    if err != nil {
      return nil, fmt.Errorf("Failed to marshal fields to JSON, %v", err)
    }
  return append(serialized, '\n'), nil
}








Logger as an io.Writer

Logrus can be transformed into an io.Writer. That writer is the end of an io.Pipe and it is your responsibility to close it.

w := logger.Writer()
defer w.Close()

srv := http.Server{
    // create a stdlib log.Logger that writes to
    // logrus.Logger.
    ErrorLog: log.New(w, "", 0),
}





Each line written to that writer will be printed the usual way, using formatters
and hooks. The level for those entries is info.




Rotation

Log rotation is not provided with Logrus. Log rotation should be done by an
external program (like logrotate(8)) that can compress and delete old log
entries. It should not be a feature of the application-level logger.




Tools

| Tool | Description |
| —- | ———– |
|Logrus Mate [https://github.com/gogap/logrus_mate]|Logrus mate is a tool for Logrus to manage loggers, you can initial logger’s level, hook and formatter by config file, the logger will generated with different config at different environment.|
|Logrus Viper Helper [https://github.com/heirko/go-contrib/tree/master/logrusHelper]|An Helper arround Logrus to wrap with spf13/Viper to load configuration with fangs! And to simplify Logrus configuration use some behavior of Logrus Mate [https://github.com/gogap/logrus_mate]. sample [https://github.com/heirko/iris-contrib/blob/master/middleware/logrus-logger/example] |




Testing

Logrus has a built in facility for asserting the presence of log messages. This is implemented through the test hook and provides:


	decorators for existing logger (test.NewLocal and test.NewGlobal) which basically just add the test hook

	a test logger (test.NewNullLogger) that just records log messages (and does not output any):



logger, hook := NewNullLogger()
logger.Error("Hello error")

assert.Equal(1, len(hook.Entries))
assert.Equal(logrus.ErrorLevel, hook.LastEntry().Level)
assert.Equal("Hello error", hook.LastEntry().Message)

hook.Reset()
assert.Nil(hook.LastEntry())








Fatal handlers

Logrus can register one or more functions that will be called when any fatal
level message is logged. The registered handlers will be executed before
logrus performs a os.Exit(1). This behavior may be helpful if callers need
to gracefully shutdown. Unlike a panic("Something went wrong...") call which can be intercepted with a deferred recover a call to os.Exit(1) can not be intercepted.

...
handler := func() {
  // gracefully shutdown something...
}
logrus.RegisterExitHandler(handler)
...








Thread safty

By default Logger is protected by mutex for concurrent writes, this mutex is invoked when calling hooks and writing logs.
If you are sure such locking is not needed, you can call logger.SetNoLock() to disable the locking.

Situation when locking is not needed includes:


	You have no hooks registered, or hooks calling is already thread-safe.



	Writing to logger.Out is already thread-safe, for example:


	logger.Out is protected by locks.



	logger.Out is a os.File handler opened with O_APPEND flag, and every write is smaller than 4k. (This allow multi-thread/multi-process writing)

(Refer to http://www.notthewizard.com/2014/06/17/are-files-appends-really-atomic/)















          

      

      

    

  

  
    
    
    0.10.0
    
    

    
 
  
  

    
      
          
            
  
0.10.0


	feature: Add a test hook (#180)

	feature: ParseLevel is now case-insensitive (#326)

	feature: FieldLogger interface that generalizes Logger and Entry (#308)

	performance: avoid re-allocations on WithFields (#335)






0.9.0


	logrus/text_formatter: don’t emit empty msg

	logrus/hooks/airbrake: move out of main repository

	logrus/hooks/sentry: move out of main repository

	logrus/hooks/papertrail: move out of main repository

	logrus/hooks/bugsnag: move out of main repository

	logrus/core: run tests with -race

	logrus/core: detect TTY based on stderr

	logrus/core: support WithError on logger

	logrus/core: Solaris support






0.8.7


	logrus/core: fix possible race (#216)

	logrus/doc: small typo fixes and doc improvements






0.8.6


	hooks/raven: allow passing an initialized client






0.8.5


	logrus/core: revert #208






0.8.4


	formatter/text: fix data race (#218)






0.8.3


	logrus/core: fix entry log level (#208)

	logrus/core: improve performance of text formatter by 40%

	logrus/core: expose LevelHooks type

	logrus/core: add support for DragonflyBSD and NetBSD

	formatter/text: print structs more verbosely






0.8.2


	logrus: fix more Fatal family functions






0.8.1


	logrus: fix not exiting on Fatalf and Fatalln






0.8.0


	logrus: defaults to stderr instead of stdout

	hooks/sentry: add special field for *http.Request

	formatter/text: ignore Windows for colors






0.7.3


	formatter/*: allow configuration of timestamp layout






0.7.2


	formatter/text: Add configuration option for time format (#158)







          

      

      

    

  

  
    
    
    NATS - Go Client
    
    

    
 
  
  

    
      
          
            
  
NATS - Go Client

A Go [http://golang.org] client for the NATS messaging system [https://nats.io].

[image: License MIT] [http://opensource.org/licenses/MIT]
[image: Go Report Card] [https://goreportcard.com/report/github.com/nats-io/go-nats] [image: Build Status] [http://travis-ci.org/nats-io/go-nats] [image: GoDoc] [http://godoc.org/github.com/nats-io/go-nats] [image: Coverage Status] [https://coveralls.io/r/nats-io/go-nats?branch=master]


Installation

# Go client
go get github.com/nats-io/go-nats

# Server
go get github.com/nats-io/gnatsd








Basic Usage

nc, _ := nats.Connect(nats.DefaultURL)

// Simple Publisher
nc.Publish("foo", []byte("Hello World"))

// Simple Async Subscriber
nc.Subscribe("foo", func(m *nats.Msg) {
    fmt.Printf("Received a message: %s\n", string(m.Data))
})

// Simple Sync Subscriber
sub, err := nc.SubscribeSync("foo")
m, err := sub.NextMsg(timeout)

// Channel Subscriber
ch := make(chan *nats.Msg, 64)
sub, err := nc.ChanSubscribe("foo", ch)
msg <- ch

// Unsubscribe
sub.Unsubscribe()

// Requests
msg, err := nc.Request("help", []byte("help me"), 10*time.Millisecond)

// Replies
nc.Subscribe("help", func(m *Msg) {
    nc.Publish(m.Reply, []byte("I can help!"))
})

// Close connection
nc := nats.Connect("nats://localhost:4222")
nc.Close();








Encoded Connections

nc, _ := nats.Connect(nats.DefaultURL)
c, _ := nats.NewEncodedConn(nc, nats.JSON_ENCODER)
defer c.Close()

// Simple Publisher
c.Publish("foo", "Hello World")

// Simple Async Subscriber
c.Subscribe("foo", func(s string) {
    fmt.Printf("Received a message: %s\n", s)
})

// EncodedConn can Publish any raw Go type using the registered Encoder
type person struct {
     Name     string
     Address  string
     Age      int
}

// Go type Subscriber
c.Subscribe("hello", func(p *person) {
    fmt.Printf("Received a person: %+v\n", p)
})

me := &person{Name: "derek", Age: 22, Address: "140 New Montgomery Street, San Francisco, CA"}

// Go type Publisher
c.Publish("hello", me)

// Unsubscribe
sub, err := c.Subscribe("foo", nil)
...
sub.Unsubscribe()

// Requests
var response string
err := c.Request("help", "help me", &response, 10*time.Millisecond)
if err != nil {
    fmt.Printf("Request failed: %v\n", err)
}

// Replying
c.Subscribe("help", func(subj, reply string, msg string) {
    c.Publish(reply, "I can help!")
})

// Close connection
c.Close();








TLS

// tls as a scheme will enable secure connections by default. This will also verify the server name.
nc, err := nats.Connect("tls://nats.demo.io:4443")

// If you are using a self-signed certificate, you need to have a tls.Config with RootCAs setup.
// We provide a helper method to make this case easier.
nc, err = nats.Connect("tls://localhost:4443", nats.RootCAs("./configs/certs/ca.pem"))

// If the server requires client certificate, there is an helper function for that too:
cert := nats.ClientCert("./configs/certs/client-cert.pem", "./configs/certs/client-key.pem")
nc, err = nats.Connect("tls://localhost:4443", cert)

// You can also supply a complete tls.Config

certFile := "./configs/certs/client-cert.pem"
keyFile := "./configs/certs/client-key.pem"
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
    t.Fatalf("error parsing X509 certificate/key pair: %v", err)
}

config := &tls.Config{
    ServerName:     opts.Host,
    Certificates:   []tls.Certificate{cert},
    RootCAs:        pool,
    MinVersion:     tls.VersionTLS12,
}

nc, err = nats.Connect("nats://localhost:4443", nats.Secure(config))
if err != nil {
    t.Fatalf("Got an error on Connect with Secure Options: %+v\n", err)
}








Using Go Channels (netchan)

nc, _ := nats.Connect(nats.DefaultURL)
ec, _ := nats.NewEncodedConn(nc, nats.JSON_ENCODER)
defer ec.Close()

type person struct {
     Name     string
     Address  string
     Age      int
}

recvCh := make(chan *person)
ec.BindRecvChan("hello", recvCh)

sendCh := make(chan *person)
ec.BindSendChan("hello", sendCh)

me := &person{Name: "derek", Age: 22, Address: "140 New Montgomery Street"}

// Send via Go channels
sendCh <- me

// Receive via Go channels
who := <- recvCh








Wildcard Subscriptions

// "*" matches any token, at any level of the subject.
nc.Subscribe("foo.*.baz", func(m *Msg) {
    fmt.Printf("Msg received on [%s] : %s\n", m.Subject, string(m.Data));
})

nc.Subscribe("foo.bar.*", func(m *Msg) {
    fmt.Printf("Msg received on [%s] : %s\n", m.Subject, string(m.Data));
})

// ">" matches any length of the tail of a subject, and can only be the last token
// E.g. 'foo.>' will match 'foo.bar', 'foo.bar.baz', 'foo.foo.bar.bax.22'
nc.Subscribe("foo.>", func(m *Msg) {
    fmt.Printf("Msg received on [%s] : %s\n", m.Subject, string(m.Data));
})

// Matches all of the above
nc.Publish("foo.bar.baz", []byte("Hello World"))








Queue Groups

// All subscriptions with the same queue name will form a queue group.
// Each message will be delivered to only one subscriber per queue group,
// using queuing semantics. You can have as many queue groups as you wish.
// Normal subscribers will continue to work as expected.

nc.QueueSubscribe("foo", "job_workers", func(_ *Msg) {
  received += 1;
})








Advanced Usage

// Flush connection to server, returns when all messages have been processed.
nc.Flush()
fmt.Println("All clear!")

// FlushTimeout specifies a timeout value as well.
err := nc.FlushTimeout(1*time.Second)
if err != nil {
    fmt.Println("All clear!")
} else {
    fmt.Println("Flushed timed out!")
}

// Auto-unsubscribe after MAX_WANTED messages received
const MAX_WANTED = 10
sub, err := nc.Subscribe("foo")
sub.AutoUnsubscribe(MAX_WANTED)

// Multiple connections
nc1 := nats.Connect("nats://host1:4222")
nc2 := nats.Connect("nats://host2:4222")

nc1.Subscribe("foo", func(m *Msg) {
    fmt.Printf("Received a message: %s\n", string(m.Data))
})

nc2.Publish("foo", []byte("Hello World!"));








Clustered Usage

var servers = "nats://localhost:1222, nats://localhost:1223, nats://localhost:1224"

nc, err := nats.Connect(servers)

// Optionally set ReconnectWait and MaxReconnect attempts.
// This example means 10 seconds total per backend.
nc, err = nats.Connect(servers, nats.MaxReconnects(5), nats.ReconnectWait(2 * time.Second))

// Optionally disable randomization of the server pool
nc, err = nats.Connect(servers, nats.DontRandomize())

// Setup callbacks to be notified on disconnects, reconnects and connection closed.
nc, err = nats.Connect(servers,
    nats.DisconnectHandler(func(nc *nats.Conn) {
        fmt.Printf("Got disconnected!\n")
    }),
    nats.ReconnectHandler(func(_ *nats.Conn) {
        fmt.Printf("Got reconnected to %v!\n", nc.ConnectedUrl())
    }),
    nats.ClosedHandler(func(nc *nats.Conn) {
        fmt.Printf("Connection closed. Reason: %q\n", nc.LastError())
    })
)

// When connecting to a mesh of servers with auto-discovery capabilities,
// you may need to provide a username/password or token in order to connect
// to any server in that mesh when authentication is required.
// Instead of providing the credentials in the initial URL, you will use
// new option setters:
nc, err = nats.Connect("nats://localhost:4222", nats.UserInfo("foo", "bar"))

// For token based authentication:
nc, err = nats.Connect("nats://localhost:4222", nats.Token("S3cretT0ken"))

// You can even pass the two at the same time in case one of the server
// in the mesh requires token instead of user name and password.
nc, err = nats.Connect("nats://localhost:4222",
    nats.UserInfo("foo", "bar"),
    nats.Token("S3cretT0ken"))

// Note that if credentials are specified in the initial URLs, they take
// precedence on the credentials specfied through the options.
// For instance, in the connect call below, the client library will use
// the user "my" and password "pwd" to connect to locahost:4222, however,
// it will use username "foo" and password "bar" when (re)connecting to
// a different server URL that it got as part of the auto-discovery.
nc, err = nats.Connect("nats://my:pwd@localhost:4222", nats.UserInfo("foo", "bar"))








License

(The MIT License)

Copyright (c) 2012-2016 Apcera Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.







          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  
	[ ] Better constructors, options handling

	[ ] Functions for callback settings after connection created.

	[ ] Better options for subscriptions. Slow Consumer state settable, Go routines vs Inline.

	[ ] Move off of channels for subscribers, use syncPool linkedLists, etc with highwater.

	[ ] Test for valid subjects on publish and subscribe?

	[ ] SyncSubscriber and Next for EncodedConn

	[ ] Fast Publisher?

	[ ] pooling for structs used? leaky bucket?

	[ ] Timeout 0 should work as no timeout

	[x] Ping timer

	[x] Name in Connect for gnatsd

	[x] Asynchronous error handling

	[x] Parser rewrite

	[x] Reconnect

	[x] Hide Lock

	[x] Easier encoder interface

	[x] QueueSubscribeSync

	[x] Make nats specific errors prefixed with ‘nats:’

	[x] API test for closed connection

	[x] TLS/SSL

	[x] Stats collection

	[x] Disconnect detection

	[x] Optimized Publish (coalescing)

	[x] Do Examples via Go style

	[x] Standardized Errors





          

      

      

    

  

  
    
    
    NUID
    
    

    
 
  
  

    
      
          
            
  
NUID

[image: License MIT] [http://opensource.org/licenses/MIT]
[image: ReportCard] [http://goreportcard.com/report/nats-io/nuid]
[image: Build Status] [http://travis-ci.org/nats-io/nuid]
[image: Release] [https://github.com/nats-io/nuid/releases/tag/v1.0.0]
[image: GoDoc] [http://godoc.org/github.com/nats-io/nuid]
[image: Coverage Status] [https://coveralls.io/github/nats-io/nuid?branch=master]

A highly performant unique identifier generator.


Installation

Use the go command:

$ go get github.com/nats-io/nuid








Basic Usage

// Utilize the global locked instance
nuid := nuid.Next()

// Create an instance, these are not locked.
n := nuid.New()
nuid = n.Next()

// Generate a new crypto/rand seeded prefix.
// Generally not needed, happens automatically.
n.RandomizePrefix()








Performance

NUID needs to be very fast to generate and be truly unique, all while being entropy pool friendly.
NUID uses 12 bytes of crypto generated data (entropy draining), and 10 bytes of pseudo-random
sequential data that increments with a pseudo-random increment.

Total length of a NUID string is 22 bytes of base 36 ascii text, so 36^22 or
17324272922341479351919144385642496 possibilities.

NUID can generate identifiers as fast as 60ns, or ~16 million per second. There is an associated
benchmark you can use to test performance on your own hardware.




License

(The MIT License)

Copyright (c) 2016 Apcera Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.







          

      

      

    

  

  
    
    
    objx
    
    

    
 
  
  

    
      
          
            
  
objx


	Jump into the API Documentation [http://godoc.org/github.com/stretchr/objx]







          

      

      

    

  

  
    
    
    <no title>
    
    

    
 
  
  

    
      
          
            
  objx - by Mat Ryer and Tyler Bunnell

The MIT License (MIT)

Copyright (c) 2014 Stretchr, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



          

      

      

    

  

  
    
    
    Frugal Python
    
    

    
 
  
  

    
      
          
            
  
Frugal Python


Using

pip install frugal==1.8.0





or to use with the Tornado nats-client [https://github.com/nats-io/python-nats]

pip install "frugal[tornado]"==1.8.0





or preferably add one of the following to requirements.txt

frugal==1.8.0
# or for tornado support
frugal[tornado]==1.8.0








Contributing


	Make a virutalenv mkvirtualenv frugal -a /path/to/frugal/lib/python

	Install dependecies make deps

	Write code, tests & create a pull requests
	Automatically run tests on fail save with make sniffer













          

      

      

    

  
_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/comment.png





_static/plus.png





_static/ajax-loader.gif





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_st